Alzheimer's disease (AD) is a progressive neurodegenerative disorder with an unclear etiology. Multiple factors, including oxidative stress and the accumulation of amyloid beta (Aβ) protein in the brain, contribute to neuronal damage. This study investigated Aβ-induced oxidative stress and cellular damage in SH-SY5Y cells, as well as the neuroprotective potential of Indian trumpet tree seed extract (ITS). SH-SY5Y cells were co-treated with Aβ((25-35)) (20 µM) and ITS extract at concentrations of 25 and 50 µg/mL. Cell viability, reactive oxygen species (ROS), malondialdehyde (MDA) levels, and the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were assessed. The expression levels of B-cell lymphoma 2 (Bcl-2) and caspase-3, along with the phosphorylation levels of protein kinase B (Akt), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and cAMP response element-binding protein (CREB), were also evaluated. ITS extract at concentrations of 25 and 50 µg/mL significantly improved SH-SY5Y cell viability following Aβ-induced damage; reduced ROS and MDA levels; and enhanced CAT, SOD, and GSH-Px activities. In addition to upregulating Bcl-2 expression, ITS downregulated caspase-3 expression and increased the phosphorylation of Akt, ERK1/2, and CREB. High-performance liquid chromatography (HPLC) analysis identified baicalin, baicalein, and chrysin as major phenolic compounds in ITS extract. In conclusion, ITS extract attenuated Aβ-induced oxidative stress, enhanced antioxidant defenses and cell viability, suppressed apoptotic signaling, and activated key neuroprotective pathways. These findings provide new insights into the neuroprotective potential of ITS extract; however, further in vivo studies are needed to validate its clinical applicability.
The Neuroprotective Potential of Seed Extract from the Indian Trumpet Tree Against Amyloid Beta-Induced Toxicity in SH-SY5Y Cells.
印度喇叭树种子提取物对SH-SY5Y细胞中β-淀粉样蛋白诱导毒性的神经保护潜力
阅读:6
作者:Palachai Nut, Buranrat Benjaporn, Noisa Parinya, Mairuae Nootchanat
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 29; 26(13):6288 |
| doi: | 10.3390/ijms26136288 | 研究方向: | 神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
