Gene regulation and its interplay with physiological behaviors are the central topics of modern biology. Classical studies on gene regulation focus intensively on specific regulatory mechanisms of transcription. Nevertheless, the genome-wide impact of RNA polymerase (RNAP) availability on gene expression remains poorly understood. Here we developed two synthetic transcriptional switches to systematically titrate the expression of either ${\sigma ^A}$ (SigA, housekeeping sigma factor) or RpoBC (core enzyme) in Bacillus subtilis. Both systems effectively modulated cell growth, but with fundamentally distinct mechanisms. SigA limitation triggered significant resource reallocation, redirecting cellular investment from biosynthetic pathways to alternative cellular pathways, which could further facilitate the engineering of dynamic growth-bioproduction switch. In contrast, RpoBC depletion caused only weak changes of gene expression but induced ribosomal inactivation through blocking translation initiation. Notably, RpoBC depletion induced DNA damage response and increased the DNA damage sensitivity of bacteria, suggesting transcription-coupled repair as a critical survival mechanism. Our findings delineate two regulatory paradigms of resource allocation that are associated with the interplay between RNAP availability and bacterial physiological state, "abundance-based" and "activity-based" regulations. The orthogonal transcriptional switches serve as a powerful tool for dissecting the integrative role of RNAP in microbial physiology, offering meaningful implications for both fundamental studies of gene regulation and synthetic biology applications.
Systematic modulation of bacterial resource allocation by perturbing RNA polymerase availability via synthetic transcriptional switches.
通过合成转录开关扰乱 RNA 聚合酶的可用性,从而系统地调节细菌资源分配
阅读:6
作者:Zhu Manlu, Dai Xiongfeng
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 Aug 11; 53(15):gkaf814 |
| doi: | 10.1093/nar/gkaf814 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
