Inhibin beta A (INHBA) and its homodimer activin A have pleiotropic effects on modulation of immune responses and tumor progression, but it remains uncertain whether tumors may release activin A to regulate anti-tumor immunity. In this study we investigated the effects and mechanisms of tumor intrinsic INHBA on carcinogenesis, tumor immunity and PD-L1 blockade. Bioinformatic analysis on the TCGA database revealed that INHBA expression levels were elevated in 33 cancer types, including breast cancer (BRCA) and colon adenocarcinoma (COAD). In addition, survival analysis also corroborated that INHBA expression was negatively correlated with the prognosis of many types of cancer patients. We demonstrated that gain or loss function of Inhba did not alter in vitro growth of colorectal cancer CT26 cells, but had striking impact on mouse tumor models including CT26, MC38, B16 and 4T1 models. By using the TIMER 2.0 tool, we figured out that in most cancer types, Inhba expression in tumors was inversely associated with the infiltration of CD4(+) T and CD8(+) T cells. In CT26 tumor-bearing mice, overexpression of tumor INHBA eliminated the anti-tumor effect of the PD-L1 antibody atezolizumab, whereas INHBA deficiency enhanced the efficacy of atezolizumab. We revealed that tumor INHBA significantly downregulated the interferon-γ (IFN-γ) signaling pathway. Tumor INHBA overexpression led to lower expression of PD-L1 induced by IFN-γ, resulting in poor responsiveness to anti-PD-L1 treatment. On the other hand, decreased secretion of IFN-γ-stimulated chemokines, including C-X-C motif chemokine 9 (CXCL9) and 10 (CXCL10), impaired the infiltration of effector T cells into the tumor microenvironment (TME). Furthermore, the activin A-specific antibody garetosmab improved anti-tumor immunity and its combination with the anti-PD-L1 antibody atezolizumab showed a superior therapeutic effect to monotherapy with garetosmab or atezolizumab. We demonstrate that INHBA and activin A are involved in anti-tumor immunity by inhibiting the IFN-γ signaling pathway, which can be considered as potential targets to improve the responsive rate of PD-1/PD-L1 blockade.
INHBA promotes tumor growth and induces resistance to PD-L1 blockade by suppressing IFN-γ signaling.
INHBA通过抑制IFN-γ信号传导促进肿瘤生长并诱导对PD-L1阻断的耐药性
阅读:9
作者:Li Fang-Lin, Gu Long-Hua, Tong Yong-Liang, Chen Run-Qiu, Chen Shi-Yi, Yu Xiao-Lu, Liu Nan, Lu Jiang-Ling, Si Yuan, Sun Jian-Hua, Chen Jing, Long Yi-Ru, Gong Li-Kun
| 期刊: | Acta Pharmacologica Sinica | 影响因子: | 8.400 |
| 时间: | 2025 | 起止号: | 2025 Feb;46(2):448-461 |
| doi: | 10.1038/s41401-024-01381-x | 研究方向: | 信号转导、肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
