BACKGROUND: Calcium oxalate (CaOx) crystals are known to cause renal injury and trigger inflammatory responses. However, the role of exosome-mediated epithelial-macrophage communication in CaOx-induced kidney injury remains unclear. METHODS: To identify key molecules, miRNA sequencing was conducted on exosomes derived from CaOx-treated (CaOx-exo) and control (Ctrl-exo) epithelial cells, identifying miR-93-3p as significantly upregulated. A combination of dual-luciferase reporter assays, Western blot, RT-qPCR, immunofluorescence staining, flow cytometry, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation-qPCR (CHIP-qPCR) was used to explore the regulation of miR-93-3p by CREB1/CRTC2 and its downstream effects on NFAT5/Akt1/NIK/NF-κB2 signaling in macrophages. The functional roles of NFAT5 in macrophage polarization and macrophage extracellular traps (METs) formation were further evaluated both in vitro and in vivo. RESULTS: Epithelial exosomes stimulated by CaOx crystals were found to promote kidney injury via macrophage polarization and METs formation. Treatment with NIK SMI1, a NIK inhibitor, or CI-amidine, a METs inhibitor, mitigated crystal deposition and CaOx-induced kidney damage. Overexpression of NFAT5 in a CaOx-induced mouse model reduced renal injury and crystal deposition, downregulated NIK and NF-κB2 levels, and decreased the number of M1-polarized macrophages. Mechanistic studies revealed that miR-93-3p directly targets NFAT5 mRNA, as confirmed by dual-luciferase assays, qRT-PCR, and Western blot. Additionally, we demonstrated that CREB1/CRTC2 acts as a transcriptional activator of miR-93-3p. Inhibition of miR-93-3p partially reversed NIK/NF-κB2 activation and alleviated kidney injury. CONCLUSIONS: CaOx crystals exacerbate renal interstitial injury by promoting M1 macrophage polarization and METs formation through the CREB1/CRTC2-exosomal miR-93-3p-NIK/NF-κB2 signaling pathway. Targeting this pathway may provide therapeutic avenues for mitigating crystal deposition-induced kidney damage.
CREB1/CRTC2 regulated tubular epithelial-derived exosomal miR-93-3p promotes kidney injury induced by calcium oxalate via activating M1 polarization and macrophage extracellular trap formation.
CREB1/CRTC2 调控的肾小管上皮细胞来源的外泌体 miR-93-3p 通过激活 M1 极化和巨噬细胞胞外陷阱形成来促进草酸钙诱导的肾损伤
阅读:19
作者:Sun Yushi, Li Bojun, Song Baofeng, Xia Yuqi, Zhou Xiangjun, Lin Fangyou, Rao Ting, Cheng Fan
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 12; 23(1):204 |
| doi: | 10.1186/s12951-025-03246-9 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肾损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
