The mouse cortex is a canonical model for studying how functional neural networks emerge, yet it remains unclear which topological features arise from intrinsic cellular organization versus external regional cues. Mouse forebrain organoids provide a powerful system to investigate these intrinsic mechanisms. We generated dorsal (DF) and ventral (VF) forebrain organoids from mouse pluripotent stem cells and tracked their development using longitudinal electrophysiology. DF organoids showed progressively stronger network-wide correlations, while VF organoids developed more refined activity patterns, enhanced small-world topology, and increased modular organization. These differences emerged without extrinsic inputs and may be driven by the increased generation of Pvalb(+) interneurons in VF organoids. Our findings demonstrate how variations in cellular composition influence the self-organization of neural circuits, establishing mouse forebrain organoids as a tractable platform to study how neuronal populations shape cortical network architecture.
Self-Organizing Neural Networks in Organoids Reveal Principles of Forebrain Circuit Assembly.
阅读:2
作者:Hernandez Sebastian, Schweiger Hunter E, Cline Isabel, Kaurala Gregory A, Robbins Ash, Solis Daniel, Geng Jinghui, van der Molen Tjitse, Reyes Francisco, Asogwa Chinweike Norman, Voitiuk Kateryna, Chini Mattia, Rolandi Marco, Salama Sofie R, Colquitt Bradley M, Sharf Tal, Haussler David, Teodorescu Mircea, Mostajo-Radji Mohammed A
期刊: | bioRxiv | 影响因子: | |
时间: | 2025 | 起止号: | 2025 May 2 |
doi: | 10.1101/2025.05.01.651773 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。