DDX3X is an X-linked RNA helicase that escapes X chromosome inactivation and is expressed at higher levels in female brains. Mutations in DDX3X are associated with intellectual disability (ID) and autism spectrum disorder (ASD) and are predominantly identified in females (DDX3X syndrome). Using cellular and mouse models, we show that Ddx3x mediates sexual dimorphisms in brain development at a molecular, cellular, and behavioral level. During cortical neuronal development, Ddx3x sustains a female-biased signature of enhanced ribosomal biogenesis and mRNA metabolism. Compared to male neurons, female neurons display larger nucleoli, higher expression of a set of ribosomal proteins, and a higher cytoplasm-to-nucleus ratio of ribosomal RNA. All these sex dimorphisms are obliterated by Ddx3x loss. Ddx3x regulates dendritic arborization complexity in a sex- and dose-dependent manner in both female and male neurons. Ddx3x modulates the development of dendritic spines but only in female neurons. Further, ablating Ddx3x conditionally in forebrain neurons is sufficient to yield sex-specific changes in developmental outcomes and motor function. Together, these findings pose Ddx3x as a mediator of sexual differentiation during neurodevelopment and open new avenues to understand sex differences in health and disease.
Sex-specific perturbations of neuronal development caused by mutations in the autism risk gene DDX3X.
阅读:2
作者:Mossa Adele, Dierdorff Lauren, Lukin Jeronimo, Garcia-Forn Marta, Wang Wei, Mamashli Fatemeh, Park Yeaji, Fiorenzani Chiara, Akpinar Zeynep, Kamps Janine, Tatzelt Jörg, Wu Zhuhao, De Rubeis Silvia
期刊: | Nature Communications | 影响因子: | 15.700 |
时间: | 2025 | 起止号: | 2025 May 15; 16(1):4512 |
doi: | 10.1038/s41467-025-59680-8 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。