The elucidation of the dual role of Beclin-1 in ischemic stroke through systems biology modeling.

通过系统生物学建模阐明Beclin-1在缺血性中风中的双重作用

阅读:8
作者:Cha Jun Seok, Kim Jinyoung, Cho Junyoung, Lee Jungho, Kim Jiyoon, Chae Dongwoo
Beclin-1 plays a pivotal role in the interplay between autophagy and apoptosis in ischemic stroke, influencing both cell survival and death. We developed a mathematical model incorporating the dual role of Beclin-1 to simulate Beclin-1-induced autophagy and apoptosis under varying ischemic stress conditions. The model predicts a critical threshold of Beclin-1 expression, beyond which apoptosis is triggered, with this threshold decreasing as stress severity increases. To validate the model predictions, we conducted in vitro Beclin-1 overexpression and knockdown experiments under mild and severe oxygen-glucose deprivation (OGD) conditions and in vivo Beclin-1 knockdown in a photothrombotic mice model. The experiments demonstrated that Beclin-1 overexpression increases Caspase activation under severe OGD, while knockdown reduces it; the opposite effects were observed under mild OGD. Simulations suggest that modulating Beclin-1 expression could extend the therapeutic window for thrombolysis. Our approach provides insights into the dual roles of Beclin-1 and highlights potential strategies for neuroprotection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。