Controlling nephron precursor differentiation to generate proximal-biased kidney organoids with emerging maturity.

控制肾单位前体分化,生成具有逐渐成熟的近端偏向肾脏类器官

阅读:7
作者:Schnell Jack, Miao Zhen, Achieng MaryAnne, Fausto Connor C, Koppitch Kari, Takhirov Lola, Wang Victoria, De Kuyper Faith, Huang Biao, Schreiber Megan, Medina Pedro, Thornton Matthew E, Grubbs Brendan, Li Zhongwei, Kim Junhyong, Lindström Nils O
The kidney maintains fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for reabsorbing sugars, ions, and amino acids, are highly susceptible to injury, often leading to pathologies necessitating dialysis or transplants. Human pluripotent stem cell-derived kidney organoids offer a platform to model renal development, function, and disease, but proximal nephron differentiation and maturation in these structures is incomplete. Here, we drive proximal tubule development in pluripotent stem cell-derived kidney organoids by mimicking in vivo proximal differentiation. Transient PI3K inhibition during early nephrogenesis activates Notch signaling, shifting nephron axial differentiation towards epithelial and proximal precursor states that mature to proximal convoluted tubule cells broadly expressing physiology-imparting solute carriers including organic cation and organic anion family members. The "proximal-biased" organoids thus acquire function, and on exposure to nephrotoxic injury, display tubular collapse and DNA damage, and upregulate injury response markers HAVCR1/KIM1 and SOX9 while downregulating proximal transcription factor HNF4A. Here, we show that proximally biased human-derived kidney organoids provide a robust model to study nephron development, injury responses, and a platform for therapeutic discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。