Fate plasticity of interneuron specification.

中间神经元分化的命运可塑性

阅读:7
作者:Mostajo-Radji Mohammed A, Leon Walter R Mancia, Breevoort Arnar, Gonzalez-Ferrer Jesus, Schweiger Hunter E, Lehrer Julian, Zhou Li, Schmitz Matthew T, Perez Yonatan, Mukhtar Tanzila, Robbins Ash, Chu Julia, Andrews Madeline G, Sullivan Frederika N, Tejera Dario, Choy Eric C, Paredes Mercedes F, Teodorescu Mircea, Kriegstein Arnold R, Alvarez-Buylla Arturo, Pollen Alex A
Neuronal subtype generation in the mammalian central nervous system is governed by competing genetic programs. The medial ganglionic eminence (MGE) produces two major cortical interneuron (IN) populations, somatostatin (Sst) and parvalbumin (Pvalb), which develop on different timelines. The extent to which external signals influence these identities remains unclear. Pvalb-positive INs are crucial for cortical circuit regulation but challenging to model in vitro. We grafted mouse MGE progenitors into diverse 2D and 3D co-culture systems, including mouse and human cortical, MGE, and thalamic models. Strikingly, only 3D human corticogenesis models promoted efficient, non-autonomous Pvalb differentiation, characterized by upregulation of Pvalb maturation markers, downregulation of Sst-specific markers, and the formation of perineuronal nets. Additionally, lineage-traced postmitotic Sst-positive INs upregulated Pvalb when grafted onto human cortical models. These findings reveal unexpected fate plasticity in MGE-derived INs, suggesting that their identities can be dynamically shaped by the environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。