Genetic disruption of SETD1A markedly increases the risk for schizophrenia. To elucidate the underlying mechanisms, we generated isogenic organoid models of the developing human cerebral cortex harboring a SETD1A loss-of-function schizophrenia risk mutation. Employing chromatin profiling combined with RNA sequencing, we identified high-confidence SETD1A target genes, analyzed the impact of the mutation on SETD1A binding and transcriptional regulation and validated key findings with orthogonal approaches. Disruption of SETD1A function disturbs the finely tuned temporal gene expression in the excitatory neuron lineage, yielding an aberrant transcriptional program that compromises key regulatory and metabolic pathways essential for neurodevelopmental transitions. Although overall SETD1A binding remains unchanged in mutant neurons, we identified localized alterations in SETD1A binding that correlate with shifts in H3K4me3 levels and gene expression. These changes are enriched at enhancer regions, suggesting that enhancer-regulated genes are especially vulnerable to SETD1A reduction. Notably, target genes with enhancer-bound SETD1A are primarily linked to neuronal functions while those with promoter-bound SETD1A are enriched for basic cellular functions. By mapping the SETD1A binding landscape in excitatory neurons of the human fetal frontal cortex and integrating multimodal neuroimaging and genetic datasets, we demonstrate that the genomic context of SETD1A binding differentially correlates with macroscale brain organization and establish a link between SETD1A-bound enhancers, schizophrenia-associated brain alterations and genetic susceptibility. Our study advances our understanding of the role of SETD1A binding patterns in schizophrenia pathogenesis, offering insights that may guide future therapeutic strategies.
Genomic and Transcriptomic Signatures of SETD1A Disruption in Human Excitatory Neuron Development and Psychiatric Disease Risk.
SETD1A 基因破坏在人类兴奋性神经元发育和精神疾病风险中的基因组和转录组特征
阅读:6
作者:Sun Zhixiong, Zhu Huixiang, He Xiaofu, Lendemeijer Bas, Wang Zanxu, Fan Jack, Sun Yan, Zhang Zhiguo, Markx Sander, Kushner Steven A, Xu Bin, Gogos Joseph A
| 期刊: | bioRxiv | 影响因子: | |
| 时间: | 2025 | 起止号: | 2025 Mar 28 |
| doi: | 10.1101/2025.03.26.645419 | 种属: | Human |
| 研究方向: | 发育与干细胞、神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
