Chemiosmotic energy for primitive cellular life: Proton gradients are generated across lipid membranes by redox reactions coupled to meteoritic quinones.

原始细胞生命的化学渗透能:质子梯度是由与陨石醌偶联的氧化还原反应在脂质膜上产生的

阅读:8
作者:Milshteyn Daniel, Cooper George, Deamer David
Transmembrane proton gradients coupled to, and maintained by, electron transport are ubiquitous sources of chemiosmotic energy in all life today, but how this system first emerged is uncertain. Here we report a model liposome system in which internal ferricyanide serves as an oxidant and external ascorbate or dithionite provide a source of electrons to electron carriers embedded in liposome membranes. Quinones linked the donor to the acceptor in a coupled redox reaction that released protons into the vesicle internal volume as electrons were transported across the membranes, thereby producing substantial pH gradients. Using this system, we found that one or more quinones in extracts from carbonaceous meteorites could serve as coupling agents and that substantial pH gradients developed in the acidic interior of liposomes. If amphiphilic compounds present on the prebiotic Earth assembled into membranous compartments that separate reduced solutes in the external medium from an encapsulated acceptor, quinones can mediate electron and proton transport across the membranes, thereby providing a source of chemiosmotic energy for primitive metabolic reactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。