Evaluating the Generalizability of Predictive Classifiers Built from DESI Imaging Lipid Data across Mass Spectrometry Platforms.

评估基于 DESI 成像脂质数据构建的预测分类器在不同质谱平台上的泛化能力

阅读:5
作者:DeHoog Rachel J, Lin Monica, Roman Gregory, Martin Roy, Suliburk James, Eberlin Livia S
In this study, we evaluate the generalizability of predictive classifiers built from DESI lipid data for thyroid fine needle aspiration (FNA) biopsy analysis and classification using two high-performance mass spectrometers (time-of-flight and orbitrap) suited with different DESI imaging sources operated by different users. The molecular profiles obtained from thyroid samples with the different platforms presented similar trends, although specific differences in ion abundances were observed. When using a previously published statistical model built to discriminate thyroid cancer from benign thyroid tissues to predict on a new independent data set obtained, agreement for 24 of the 30 samples across the imaging platforms was achieved. We also tested the classifier on six clinical FNAs and obtained agreement between the predictive results and clinical diagnosis for the different conditions. Altogether, our results provide evidence that statistical classifiers generated from DESI lipid data are applicable across different high-resolution mass spectrometry platforms for thyroid FNA classification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。