BACKGROUND: Drought is an abiotic stress that significantly reduces the yield of thyme (Thymus vulgaris). This study investigated how iron oxide nanoparticles (FeNPs), together with symbiotic bacterial (Azospirillum lipoferum) and fungal (Aspergillus oryzae) endophytes, modulate osmotic adjustment, molecular and biochemical mechanisms related to photosynthesis, and drought tolerance mechanisms in thyme. RESULTS: The experiment was evaluated as a factorial experiment in a completely randomized design with three replications. evaluating three treatment factors: four irrigation levels (100%, 75%, 50%, and 25% of field capacity), four FeNPs concentrations (0, 0.5, 1, and 1.5 mg Lâ»Â¹), and three endophyte treatments (control, bacterial (EB), and fungal (EF) inoculation). At 25% FC, EB and spraying with 1 mg L(-â1) FeNPs increased Fv/Fm (maximum quantum efficiency of photosystem II), chlorophyll a, chlorophyll b, and total chlorophyll, carotenoids, relative water content (RWC), and protein levels level protein levels by 18.75%, 10.41%, 31.54%, 18.20%, 14.26%, 35.53%, and 125.22% respectively, compared to the control. At 25% FC, electrolyte leakage (EL) was increased by 47.44% with the combination of EF and 1.5 mg L(-â1) FeNPs. The highest proline accumulation at 25% FC was observed after inoculation with EF and 1 mg L(-â1) FeNPs, resulting in significant increases of 36.36% and 13.04%, respectively, compared to the control. Soluble sugar was remarkably increased by 28.57% under upon treatment with FeNPs (1.5 mg L(-â1) FeNPs). At 25% FC, EB and 1.5 mg L(-â1) FeNPs showed significant reductions of 17.33% and 37.10%, respectively, in malondialdehyde levels compared to control plants. At 50% FC, 1 mg Lâ»Â¹ FeNPs increased Catalase by 15%, peroxidase by 31.25%, and superoxide dismutase by 43.42%, while higher concentrations reduced enzyme activities. Similarly, 1.5 mg Lâ»Â¹ FeNPs and EB inoculation enhanced ascorbate peroxidase by 37.44% and 17.37%, respectively. FeNPs acted as abiotic stressors at low levels but became toxic at higher concentrations. CONCLUSION: Our findings demonstrate that the synergistic application of FeNPs and endophytes significantly enhances drought tolerance in T. vulgaris by optimizing photosynthetic efficiency (Fv/Fm, chlorophyll content) and preserving membrane integrity (RWC, MDA reduction). These results provide a framework for leveraging nano-bio partnerships to improve crop resilience under water scarcity.
How thyme thrives under drought: insights into photosynthetic and membrane-protective mechanisms.
阅读:2
作者:Kamyab Afsoun, Samsampour Davood
| 期刊: | BMC Biotechnology | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Sep 2; 25(1):95 |
| doi: | 10.1186/s12896-025-01026-9 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
