Specific pathways prevent duplication-mediated genome rearrangements

特定途径可防止重复介导的基因组重排

阅读:3
作者:Christopher D Putnam, Tikvah K Hayes, Richard D Kolodner

Abstract

We have investigated the ability of different regions of the left arm of Saccharomyces cerevisiae chromosome V to participate in the formation of gross chromosomal rearrangements (GCRs). We found that the 4.2-kilobase HXT13-DSF1 region sharing divergent homology with chromosomes IV, X and XIV, similar to mammalian segmental duplications, was 'at risk' for participating in duplication-mediated GCRs generated by homologous recombination. Numerous genes and pathways, including SGS1, TOP3, RMI1, SRS2, RAD6, SLX1, SLX4, SLX5, MSH2, MSH6, RAD10 and the DNA replication stress checkpoint requiring MRC1 and TOF1, were highly specific for suppressing these GCRs compared to GCRs mediated by single-copy sequences. These results indicate that the mechanisms for formation and suppression of rearrangements occurring in regions containing at-risk sequences differ from those occurring in regions of single-copy sequence. This explains how extensive genome instability is prevented in eukaryotic cells whose genomes contain numerous divergent repeated sequences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。