Modulating D-Band Center of SrTiO(3) by Co Doping for Boosted Peroxymonosulfate (PMS) Activation Under Visible Light.

阅读:2
作者:Sun Kaining, Yang Xinyi, Qi Fei, Liu Yingjie, Wang Lijing, Feng Bo, Yu Jiankang, Che Guangbo
Peroxymonosulfate (PMS)-based advanced oxidation technology has emerged as an effective means for removing organic pollutants from water due to its strong oxidizing ability. However, enhancing the activation efficiency of PMS represents a key challenge at present. SrTiO(3), a typical perovskite metal oxide, holds potential in the field of the photocatalytic degradation of pollutants, yet its application is limited by the wide bandgap and fast carrier recombination rates. This study optimized the photocatalytic performance of SrTiO(3) by regulating its electronic structure and optical properties through cobalt (Co) doping. Experimental results (TRPL, TPV, UV-Vis DRS, ESR, etc.) and DFT calculations (GGA-PBE) demonstrated that Co doping shifted the d-band center of SrTiO(3) upwards, optimized the adsorption energy of SO(4)(-), enhanced the sunlight response range, and significantly improved carrier extraction efficiency. Under visible light irradiation, 2,4-dichlorophenol (2,4-DCP) could be effectively degraded within 60 min in a wide pH range. Through Fukui function calculation (B3LYP/6-31G*) and experimental characterization analysis (HPLC-MS and IC), the possible degradation pathways of 2,4-DCP and the mechanism for photocatalysis were investigated. The toxicity analysis (T.E.S.T) confirmed the reduced toxicity of the degradation products of 2,4-DCPs. This study provides a reference for the catalyst design and optimization strategy of PMS-based advanced oxidation technology.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。