Lapatinib-Resistant HER2+ Breast Cancer Cells Are Associated with Dysregulation of MAPK and p70S6K/PDCD4 Pathways and Calcium Management, Influence of Cryptotanshinone.

拉帕替尼耐药的 HER2+ 乳腺癌细胞与 MAPK 和 p70S6K/PDCD4 通路失调和钙管理有关,隐丹参酮对其有影响

阅读:6
作者:Hernández-Valencia Jorge, García-Villarreal Ruth, Rodríguez-Jiménez Manuel, Hernández-Avalos Alex Daniel, Rivero Ignacio A, Vique-Sánchez José Luis, Chimal-Vega Brenda, Pulido-Capiz Angel, García-González Victor
Resistance to HER2 tyrosine-kinase inhibitor Lapatinib (Lap) is one of the leading causes of cancer treatment failure in HER2+ breast cancer (BC), associated with an aggressive tumor phenotype. Cryptotanshinone (Cry) is a natural terpene molecule that could function as a chemosensitizer by disturbing estrogen receptor (ERα) signaling and inhibiting the protein translation factor-4A, eIF4A. Therefore, we evaluated Cry dual regulation on eIF4A and ERα. This study aimed to elucidate the underlying mechanisms of Lap chemoresistance and the impact of Cry on them. We generated two Lap-resistant BT474 cell HER2+ variants named BT474(LapRV1) and BT474(LapRV2) with high chemoresistance levels, with 7- and 11-fold increases in EC(50), respectively, compared to BT474 parental cells. We found a PDCD4-p70S6Kβ axis association with Lap chemoresistance. However, a concomitant down-regulation of the RAF-MEK-ERK cell survival pathway and NF-κB was found in the chemoresistant cell variants; this phenomenon was exacerbated by joint treatment of Cry and Lap under a Lap plasmatic reported concentration. Optimized calcium management was identified as a compensatory mechanism contributing to chemoresistance, as determined by the higher expression of calcium pumps PMCA1/4 and SERCA2. Contrary to expectations, a combination of Lap and Cry did not affect the chemoresistance despite the ERα down-regulation; Cry-eIF4A binding possibly dampens this condition. Results indicated the pro-survival eIF4A/STAT/Bcl-xl pathway and that the down-regulation of the MAPK-NF-κB might function as an adaptive mechanism; this response may be compensated by calcium homeostasis in chemoresistance, highlighting new adaptations in HER2+ cells that lead to chemoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。