The accumulation of organic pollutants and solid waste is one of the major environmental challenges faced globally. Establishing an efficient recycling system for solid waste and designing cost-effective, high-performance photocatalysts are urgent tasks for the removal of organic pollutants from water. This study utilizes coal gangue as the precursor to synthesize a coal gangue-based phosphorus-silicon-aluminum molecular sieve (SAPO-5) via hydrothermal synthesis. The resulting material was then composited with bismuth oxybromide (BiOBr) to form a novel BiOBr/coal gangue-based SAPO-5 nanocomposite. When the mass ratio of BiOBr to coal gangue-based SAPO-5 molecular sieve is 0.3, the synthesized nanocomposite exhibits excellent adsorption and photocatalytic performance for the removal of methylene blue, achieving a removal rate of 97.8% and the mineralization rate of 57.4% within 30 min. The superior performance can be attributed to the optimal pore size, rapid charge transfer rate, and high photogenerated charge density of the BiOBr/coal gangue-based SAPO-5 nanocomposite. The novel BiOBr/coal gangue-based SAPO-5 molecular sieve nanocomposite catalyst presents a new approach for the harmless treatment of organic dye wastewater and the high-value utilization of coal gangue.
BiOBr/Coal Gangue-Based SAPO-5 Molecular Sieve Nanocomposite for Enhanced Adsorption and Photocatalytic Degradation of Methylene Blue.
阅读:3
作者:Xu Boyang, Chen Jie, Wang Kai, Li Pengfei, Kang Le, Du Huiling, Liu Qianqian, Lian Xiaoqing
期刊: | Nanomaterials | 影响因子: | 4.300 |
时间: | 2025 | 起止号: | 2025 Feb 20; 15(5):321 |
doi: | 10.3390/nano15050321 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。