BiOBr/Coal Gangue-Based SAPO-5 Molecular Sieve Nanocomposite for Enhanced Adsorption and Photocatalytic Degradation of Methylene Blue.

BiOBr/煤矸石基SAPO-5分子筛纳米复合材料增强亚甲基蓝的吸附和光催化降解

阅读:7
作者:Xu Boyang, Chen Jie, Wang Kai, Li Pengfei, Kang Le, Du Huiling, Liu Qianqian, Lian Xiaoqing
The accumulation of organic pollutants and solid waste is one of the major environmental challenges faced globally. Establishing an efficient recycling system for solid waste and designing cost-effective, high-performance photocatalysts are urgent tasks for the removal of organic pollutants from water. This study utilizes coal gangue as the precursor to synthesize a coal gangue-based phosphorus-silicon-aluminum molecular sieve (SAPO-5) via hydrothermal synthesis. The resulting material was then composited with bismuth oxybromide (BiOBr) to form a novel BiOBr/coal gangue-based SAPO-5 nanocomposite. When the mass ratio of BiOBr to coal gangue-based SAPO-5 molecular sieve is 0.3, the synthesized nanocomposite exhibits excellent adsorption and photocatalytic performance for the removal of methylene blue, achieving a removal rate of 97.8% and the mineralization rate of 57.4% within 30 min. The superior performance can be attributed to the optimal pore size, rapid charge transfer rate, and high photogenerated charge density of the BiOBr/coal gangue-based SAPO-5 nanocomposite. The novel BiOBr/coal gangue-based SAPO-5 molecular sieve nanocomposite catalyst presents a new approach for the harmless treatment of organic dye wastewater and the high-value utilization of coal gangue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。