The miniaturization of analytical systems and the utilization of nontoxic natural extract from plants play significant roles for green analytical chemistry methodology. In this work, the microfluidic hydrodynamic sequential injection (HSI) with the LED-phototransistor colorimetric detection system has been proposed to create an ecofriendly and low-cost miniaturized analytical system for online determination of iron in water samples using Curcuma putii Maknoi & Jenjitt. extracts as high stability and good selectivity of a natural reagent. The proposed method was designed for online solution mixing and colorimetric detection on a microfluidic platform. The Curcuma putii Maknoi & Jenjitt. extracts and standard/samples were sequentially aspirated to fill the channel before entering the built-in flow cell. The intensity of iron-Curcuma putii Maknoi & Jenjitt. extract complex was monitored under the optimum conditions of flow rate, sample volume, mixing zone length, and aspiration sequences, by altering the gain control of the colorimetric detector to achieve good sensitivity. The results demonstrated a good performance of the green analytical systems. A linear calibration graph in the range of 0.5-6.0âmg L(-1) was obtained with a limit of detection at an adequate level of 0.11âmg L(-1) for water samples with a sample throughput of 30âh(-1). The precise and accurate measurement results were achieved with relative standard deviations in the range of 1.61-1.72%, and percent recoveries were found in the range of 90.6-113.4. The proposed method offers cost-effective, easy operation over an appropriate analysis time (2âmin/injection) with good sensitivity and is environmentally friendly with low consumption of solutions and the use of high stability and good selectivity of nontoxic reagents. The achieved method was demonstrated to be a good choice for routine analysis.
An Environmentally Friendly Compact Microfluidic Hydrodynamic Sequential Injection System Using Curcuma putii Maknoi & Jenjitt. Extract as a Natural Reagent for Colorimetric Determination of Total Iron in Water Samples.
阅读:2
作者:Namjan Maneerat, Kaewwonglom Natcha, Dechakiatkrai Theerakarunwong Chonlada, Jakmunee Jaroon, Khongpet Wanpen
期刊: | Journal of Analytical Methods in Chemistry | 影响因子: | 2.200 |
时间: | 2023 | 起止号: | 2023 Jan 13; 2023:3400863 |
doi: | 10.1155/2023/3400863 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。