Effect of polymerization mode on shrinkage kinetics and degree of conversion of dual-curing bulk-fill resin composites.

聚合方式对双重固化大块填充树脂复合材料收缩动力学和转化率的影响

阅读:10
作者:Burrer Phoebe, Par Matej, Fürer Leo, Stübi Michelle, Marovic Danijela, Tarle Zrinka, Attin Thomas, Tauböck Tobias T
OBJECTIVES: To assess the behavior of dual-cure and conventional bulk-fill composite materials on real-time linear shrinkage, shrinkage stress, and degree of conversion. MATERIALS AND METHODS: Two dual-cure bulk-fill materials (Cention, Ivoclar Vivadent (with ion-releasing properties) and Fill-Up!, Coltene) and two conventional bulk-fill composites (Tetric PowerFill, Ivoclar Vivadent; SDR flow + , Dentsply Sirona) were compared to conventional reference materials (Ceram.x Spectra ST (HV), Dentsply Sirona; X-flow; Dentsply Sirona). Light curing was performed for 20 s, or specimens were left to self-cure only. Linear shrinkage, shrinkage stress, and degree of conversion were measured in real time for 4 h (n = 8 per group), and kinetic parameters were determined for shrinkage stress and degree of conversion. Data were statistically analyzed by ANOVA followed by post hoc tests (α = 0.05). Pearson's analysis was used for correlating linear shrinkage and shrinkage force. RESULTS: Significantly higher linear shrinkage and shrinkage stress were found for the low-viscosity materials compared to the high-viscosity materials. No significant difference in degree of conversion was revealed between the polymerization modes of the dual-cure bulk-fill composite Fill-Up!, but the time to achieve maximum polymerization rate was significantly longer for the self-cure mode. Significant differences in degree of conversion were however found between the polymerization modes of the ion-releasing bulk-fill material Cention, which also exhibited the significantly slowest polymerization rate of all materials when chemically cured. CONCLUSIONS: While some of the parameters tested were found to be consistent across all materials studied, heterogeneity increased for others. CLINICAL RELEVANCE: With the introduction of new classes of composite materials, predicting the effects of individual parameters on final clinically relevant properties becomes more difficult.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。