Microbial and microeukaryotic communities are extremely abundant and diverse in soil habitats where they play critical roles in ecosystem functioning and services that are essential to soil health. Soil biodiversity is influenced by above-ground (vegetation) and below-ground factors (soil properties), which together create habitat-specific conditions. However, the compound effects of vegetation and soil properties on soil communities are less studied or often focused on one component of the soil biota. Here, we integrate metabarcoding (16S and 18S rRNA genes) and nematode morphology to assess the effects of habitat and soil properties shaping microbial and microeukaryotic communities as well as nematode-associated microbiomes. We show that both vegetation and soil properties (soil bulk density) were major factors structuring microbial and microeukaryotic communities in semi-arid soil habitats. Despite having lower nutrients and lower pH, denser soils displayed significantly higher alpha diversity than less dense soils across datasets. Nematode-associated microbiomes have lower microbial diversity, strongly differ from soil microbes and are more likely to respond to microscale variations among samples than to vegetation or soil bulk density. Consequently, different nematode lineages and trophic groups are likely to display similar associated microbiomes when sharing the same microhabitat. Different microbiome taxa were enriched within specific nematode lineages (e.g. Mycobacterium, Candidatus Cardinium) highlighting potentially new species-specific associations that may confer benefits to their soil nematode hosts. Our findings highlight the importance of exploring above- and below-ground effects to assess community structure in terrestrial habitats, and how fine-scale analyses are critical for understanding patterns of host-associated microbiomes.
Soil properties predict below-ground community structure, but not nematode microbiome patterns in semi-arid habitats.
土壤特性可以预测地下群落结构,但不能预测半干旱生境中的线虫微生物组模式
阅读:5
作者:Pereira Tiago José, De Santiago Alejandro, Bik Holly M
| 期刊: | Molecular Ecology | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Sep;33(18):e17501 |
| doi: | 10.1111/mec.17501 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
