X-shaped DNA potentiates therapeutic efficacy in colitis-associated colon cancer through dual activation of TLR9 and inflammasomes.

X 形 DNA 通过 TLR9 和炎症小体的双重激活增强结肠炎相关结肠癌的治疗效果

阅读:9
作者:Koo Jung Eun, Shin Seung Won, Um Soong Ho, Lee Joo Young
BACKGROUND: Immunotherapy has been extensively pursed as a promising strategy for the treatment of cancer. Pattern-recognition receptors (PRRs) play important roles in triggering activation of innate and adaptive immunity. Therefore, agents that stimulate PRRs could be useful for cancer immunotherapy. We developed two kinds of X-shaped double-stranded oligodeoxynucleotides (X-DNA), a single unit of X-DNA (XS-DNA) composed of four strands of DNA and a ligated X-DNA complex (XL-DNA) formed by crosslinking each XS-DNA to the other, and investigated if they had immunostimulatory activity and could be applied to anti-cancer immunotherapy. METHODS: Activation of MAPKs and NF-κB was determined by immunoblotting in bone marrow-derived primary dendritic cells (BMDCs). Immune cytokines and co-stimulatory molecules were measured by ELISA and flow cytometry analysis. Anti-cancer efficacy was examined in an azoxymethane/dextran sulfate sodium-induced colitis-associated colon cancer mouse model. Association of X-DNA and TLR9 was determined by co-immunoprecipitation followed by immunoblotting. The involvement of TLR9 and inflammasomes was determined using TLR9- or caspase-1-deficient BMDCs. Inflammasome activation was examined by degradation of pro-caspase-1 to caspase-1 and cleavage of pro-IL-1β to IL-1β in BMDCs. RESULTS: XL-DNA and XS-DNA induced activation of MAPKs and NF-κB and production of immune cytokines and co-stimulatory molecules in BMDCs. BMDCs stimulated by XL-DNA induced differentiation of naïve CD4(+) T cells to TH1 cells. Intravenous injection of XL-DNA into mice resulted in increased serum IFN-γ and IL-12 levels, showing in vivo efficacy of XL-DNA to activate TH1 cells and dendritic cells. XL-DNA greatly enhanced the therapeutic efficacy of doxorubicin, an anti-cancer drug, in colitis-associated colon cancer. XL-DNA directly associated with TLR9. In addition, immunostimulatory activities of X-DNA were abolished in TLR9-deficient dendritic cells. Furthermore, X-DNA induced caspase-1 degradation and IL-1β secretion in BMDCs, which were abolished in caspase-1-deficient cells. CONCLUSIONS: X-DNA induced the activation of dendritic cells as shown by the expression of immune-cytokines and co-stimulatory molecules, resulting in the differentiation of TH1 cells, mediated through dual activation of TLR9 and inflammasomes. X-DNA represents a promising immune adjuvant that can enhance the therapeutic efficacy of anti-cancer drugs by activating PRRs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。