The purpose of the present study is to characterize poly(d,l-lactide-co-glycolide) (PLGA) composite microcarriers for vascular endothelial growth factor (VEGF) delivery. To reduce the initial burst release and protect the bioactivity, VEGF is encapsulated in soybean l-α-phosphatidylethanolamine (PE) and l-α-phosphatidylcholine (PC) anhydrous reverse micelle (VEGF-RM) nanoparticles. Also, mesoporous nano-hexagonal Mg(OH)(2) nanostructure (MNS)-loaded PE/PC anhydrous reverse micelle (MNS-RM) nanoparticles are synthesized to suppress the induced inflammation of PLGA acidic byproducts and regulate the release profile. The flow-focusing microfluidic geometry platforms are used to fabricate different combinations of PLGA composite microspheres (PLGA-CMPs) with MNSs, MNS-RM, VEGF-RM, and native VEGF. The essential parameters of each formulation, such as release profiles, encapsulation efficacy, bioactivity, inflammatory response, and cytotoxicity, are investigated by in vitro and in vivo studies. The results indicate that generated acidic byproducts during the hydrolytic degradation process of PLGA can be buffered, and pH values inside and outside microspheres can remain steady during degradation by MNSs. Furthermore, the significant improvement in the stability of the encapsulated VEGF is confirmed by the bioactivity assay. In vitro release study shows that the VEGF initial burst release is well minimized in the present microcarriers. The present monodisperse PLGA-CMPs can be widely used in various tissue engineering and therapeutic applications.
Impact of Lipid/Magnesium Hydroxide Hybrid Nanoparticles on the Stability of Vascular Endothelial Growth Factor-Loaded PLGA Microspheres.
脂质/氢氧化镁杂化纳米粒子对载有血管内皮生长因子的PLGA微球稳定性的影响
阅读:11
作者:Omidi Meisam, Mansouri Vahid, Mohammadi Amirabad Leila, Tayebi Lobat
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2021 | 起止号: | 2021 Jun 2; 13(21):24370-24384 |
| doi: | 10.1021/acsami.0c22140 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
