Codon-deoptimized single-round infectious virus for therapeutic and vaccine applications.

用于治疗和疫苗应用的密码子去优化的单轮感染性病毒

阅读:11
作者:Noguchi Takafumi, Miyamori Anju, Sugimoto Takeshi, Miyazato Paola, Ebina Hirotaka
Coxsackievirus B3 (CVB3) is a major cause of myocarditis and acute pancreatitis, particularly in neonates, in whom infections result in severe symptoms and high mortality rates. Despite the urgent need for effective preventive strategies, no vaccines or therapeutic agents have been developed. Live-attenuated vaccines hold promise for combating viral infections; however, their pathogenicity must be carefully regulated without compromising immunogenicity. Here, we investigated codon deoptimization and defective viral genomes (DVGs) as strategies to modulate CVB3 pathogenicity, while preserving its immune-activating capacity. Codon-deoptimized CVB3s with increased CpG dinucleotide content in their 3CD region were engineered, leveraging the innate immunostimulatory properties of CpG. These modified CVB3s exhibited attenuated pathogenicity proportional to the level of codon deoptimization and induced protective immunity against wild-type CVB3 (CVB3(WT)), making them viable live-attenuated vaccine candidates. Additionally, DVGs derived from codon-deoptimized CVB3 demonstrated superior viral interference and enhanced stimulation of neutralizing antibody production compared to DVGs derived from CVB3(WT). These findings highlight that CpG-enriched genomes and DVGs are promising tools for regulating viral pathogenicity, enhancing vaccine safety, and developing therapeutic strategies against viral infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。