Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001.

嗜热古菌 Thermococcus sp. B1001 菌株对环状麦芽糊精的胞外合成、特异性识别和胞内降解

阅读:9
作者:Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T
A unique extracellular and thermostable cyclomaltodextrin glucanotransferase (CGTase) from the hyperthermophilic archaeon Thermococcus sp. strain B1001 produces predominantly (>85%) alpha-cyclomaltodextrin (alpha-CD) from starch (Y. Tachibana, et al., Appl. Environ. Microbiol. 65:1991--1997, 1999). Nucleotide sequencing of the CGTase gene (cgtA) and its flanking region was performed, and a cluster of five genes was found, including a gene homolog encoding a cyclomaltodextrinase (CDase) involved in the degradation of CDs (cgtB), the gene encoding CGTase (cgtA), a gene homolog for a CD-binding protein (CBP) (cgtC), and a putative CBP-dependent ABC transporter involved in uptake of CDs (cgtDE). The CDase was expressed in Escherichia coli and purified. The optimum pH and temperature for CD hydrolysis were 5.5 and 95 degrees C, respectively. The molecular weight of the recombinant enzyme was estimated to be 79,000. The CDase hydrolyzed beta-CD most efficiently among other CDs. Maltose and pullulan were not utilized as substrates. Linear maltodextrins with a small glucose unit were very slowly hydrolyzed, and starch was hydrolyzed more slowly. Analysis by thin-layer chromatography revealed that glucose and maltose were produced as end products. The purified recombinant CBP bound to maltose as well as to alpha-CD. However, the CBP exhibited higher thermostability in the presence of alpha-CD. These results suggested that strain B1001 possesses a unique metabolic pathway that includes extracellular synthesis, transmembrane uptake, and intracellular degradation of CDs in starch utilization. Potential advantages of this starch metabolic pathway via CDs are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。