Endoplasmic reticulum-mitochondria contacts are prime hotspots of phospholipid peroxidation driving ferroptosis.

内质网-线粒体接触是磷脂过氧化的主要热点,可导致铁死亡

阅读:10
作者:Sassano Maria Livia, Tyurina Yulia Y, Diokmetzidou Antigoni, Vervoort Ellen, Tyurin Vladimir A, More Sanket, La Rovere Rita, Giordano Francesca, Bultynck Geert, Pavie Benjamin, Swinnen Johan V, Bayir Hülya, Kagan Valerian E, Scorrano Luca, Agostinis Patrizia
The peroxidation of membrane phospholipids (PLs) is a hallmark of ferroptosis. The endoplasmic reticulum and mitochondria have been implicated in ferroptosis, but whether intracellular PL peroxidation ensues at their contact sites (endoplasmic reticulum-mitochondria contact sites, EMCSs) is unknown. Using super-resolution live imaging, we charted the spatiotemporal events triggered by ferroptosis at the interorganelle level. Here we show that EMCSs expand minutes after localized PL peroxides are formed and secondarily spread to mitochondria, promoting mitochondrial reactive oxygen species and fission. Oxidative lipidomics unravels that EMCSs host distinct proferroptotic polyunsaturated-PLs, including doubly proferroptotic polyunsaturated-acylated PLs, demonstrating their high propensity to undergo PL peroxidation. Endoplasmic reticulum-mitochondria untethering blunts PL peroxidation and ferroptosis, while EMCS stabilization enhances them. Consistently, distancing EMCSs protects the ferroptosis-susceptible triple-negative breast cancer subtype, harbouring high EMCS-related gene expression and basal PL peroxide levels. Conversely, in insensitive triple-negative breast cancer subtypes, bolstering EMCSs sensitizes them to ferroptosis. Our data unveil endoplasmic reticulum-mitochondria appositions as initial hubs of PL peroxide formation and posit that empowering EMCSs endorses ferroptosis in cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。