The Role of V-ATPase ATP6V0D1 Subunit in Chemoresistance and Ellipticine-Induced Cytoplasmic Vacuolation in Neuroblastoma Cells.

V-ATPase ATP6V0D1 亚基在神经母细胞瘤细胞的化疗耐药性和椭圆吡啶诱导的细胞质空泡化中的作用

阅读:10
作者:Rychla M, Hrabeta J, Jencova P, Podhorska N, Eckschlager T
Drug resistance remains a major obstacle in neuroblastoma treatment. Lysosomal sequestration, facilitated by the V-ATPase proton pump, is one of the mechanisms of chemoresistance. Overexpression of the ATP6V0D1 subunit of V-ATPase, previously reported in various cancers, was also observed in ellipticine-resistant neuroblastoma cells in our study. Neuroblastoma cells also exhibited increased lysosomal capacity and vacuolation after ellipticine treatment. Knockdown of ATP6V0D1, but not ATP6V1H, enhanced ellipticine sensitivity, suppressed proliferation and migration, decreased lysosomal uptake, and induced G2/M arrest in neuroblastoma cell lines. Notably, inhibiting another V-ATPase subunit, ATP6V1H, had no effect, highlighting the specific role of ATP6V0D1 in drug resistance. Ellipticine-induced vacuolation, identified as endoplasmic reticulum swelling, lacked evidence of paraptosis. ATP6V0D1 knockdown suppressed this phenomenon, whereas ATP6V1H silencing did not. Our findings underscore the importance of ATP6V0D1 in neuroblastoma and suggest potential therapeutic strategies targeting V-ATPase for overcoming drug resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。