The unexplored mechanism of antitumoral effect of pirfenidone in melanoma cells.

吡非尼酮在黑色素瘤细胞中发挥抗肿瘤作用的未探索机制

阅读:7
作者:Marchese Melissa, La Regina Gilda, Amato Rachele, Bertoni Gianmarco, Ruzzolini Jessica, Martinucci Daniele, Papucci Laura, Peppicelli Silvia, Bianchini Francesca
Melanoma is still one of the most aggressive cancers, with global incidence and mortality rates expected to rise significantly by 2040. Surgical excision with adequate safety margins remains the standard treatment for primary cutaneous melanoma. However, the therapeutic approach to treat advanced stages or disease recurrence in melanoma is still challenging. Although initial responses to combined targeted therapies and immune checkpoint inhibitors often achieve clinical success, disease progression remains difficult to manage. Thus, there is an urgent need for novel and unexplored therapeutic strategies. Pirfenidone (PFD) is an antifibrotic drug approved for Idiopathic Pulmonary Fibrosis, with anti-inflammatory, and anti-oxidant properties. Its primary mechanism involves Transforming Growth Factorβ signalling downregulation, alongside with the suppression of cytokine and reactive oxygen species (ROS) release. Recently, it has been suggested that PFD may function as furin convertase enzyme inhibitor. Furin is involved in many physiological and pathological processes such as BRAF oncogene activation. In this study, we investigated the mechanisms of antitumoral effect of PFD in BRAF mutated human melanoma cell lines. Docking analysis revealed a close interaction between PFD and furin convertase active site. In vitro studies revealed that PFD reduced cell proliferation, clonogenicity, and invasiveness. Interestingly, the early antioxidant effect observed during PFD treatment was later replaced by a marked increase in ROS levels, along with p21 upregulation and induction of apoptosis. This multi-angle approach highlights a key role of furin in melanoma cell aggressiveness. Although, the present study lacks clinical data from melanoma patients, our observations suggest that PFD may represent a treatment option for metastatic melanoma cases that are resistant to conventional therapeutic interventions, through a drug repurposing approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。