The antipsychotic drug thiothixene stimulates macrophages to clear pathogenic cells by inducing arginase 1 and continual efferocytosis.

阅读:2
作者:Kojima Yoko, Ye Zhongde, Wang Fudi, Lotfi Mozhgan, Bell Caitlin Fox, Adkar Shaunak Sanjay, Luo Lingfeng, Fu Changhao, Leeper Nicholas J
Stimulating efferocytosis, the phagocytic removal of apoptotic cells by macrophages, has been proposed as a method to eliminate dying or dead cells that accumulate and contribute to diseases such as cancer, atherosclerosis, and infection. Toxicity related to the off-target clearance of healthy tissue has led to the premature termination of multiple clinical programs for proefferocytic therapies. To identify potential proefferocytic therapies with established risk profiles, we screened ~3000 US Food and Drug Administration (FDA)-approved drugs and other well-characterized compounds for their capacity to stimulate efferocytosis. We found that the antipsychotic drug thiothixene stimulated efferocytosis of apoptotic and lipid-laden cells by mouse and human macrophages and enhanced the continual efferocytosis of apoptotic cells. Consistent with thiothixene's suppressive effects on dopaminergic signaling, dopamine potently inhibited efferocytosis in a manner that was only partially reversed by thiothixene. The prophagocytic effects of thiothixene in mouse macrophages depended on increased expression of the gene encoding the retinol-binding protein receptor Stra6L, which, in turn, promoted the production of the continual efferocytosis stimulator arginase 1. Our findings demonstrate that dopamine inhibits efferocytosis in macrophages and identify thiothixene, a generic, FDA-approved antipsychotic drug that has been in use for more than 50 years, as a promising candidate for promoting continual efferocytosis and the removal of diseased tissue.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。