Osseointegration for implants, especially bioinert implants, poses significant clinical challenges. Overcoming fibrotic encapsulation and promoting osseointegration at the implant interface are critical for successful bone repair, which highly expected biomaterials with osteoblast over fibroblast selectivity. However, few materials possess the function. β-amino acid polymers have demonstrated cell adhesion property, easy preparation, and robust stability to resist proteolysis as emerging biomaterials. Here, we develop amphiphilic β-amino acid polymers that demonstrate exceptional osteoblast vs fibroblast selectivity, outperforming the natural osteoblast-selective KRSR peptide. The optimal polymer selectively supports osteoblast adhesion by manipulating the adsorption of serum proteins and the presentation of RGD motifs on polymer-modified surfaces. In vivo study using polymer-modified titanium-implants in female rat maxillary bone reveals that the optimal polymer substantially promotes osseointegration of titanium-implants compared to uncoated titanium-implants, which tend to develop fibrous encapsulation. This study demonstrates the effectiveness of our strategy in designing osteoblast-selective biomaterials and implies the promising application of β-amino acid polymer as emerging osteoblast-selective biomaterials to promote osseointegration.
Promoting implant osseointegration via the osteoblast-selective β-amino acid polymer strategy.
阅读:2
作者:Chen Qi, Gu Jiawei, Zhang Haodong, Zhang Donghui, Wang Yuwen, Liu Guojian, Zhu Xiang, Zhang Xinyue, Cao Chuntao, Yuan Yuan, Liu Runhui
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 5; 16(1):7190 |
| doi: | 10.1038/s41467-025-58394-1 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
