Dexmedetomidine induces immunogenic cancer cell death and sensitizes tumors to PD-1 blockade

右美托咪定诱导免疫原性癌细胞死亡,并使肿瘤对PD-1阻断疗法敏感。

阅读:2
作者:Liwei Zhao ,Peng Liu ,Allan Sauvat ,Killian Carnet Le Provost ,Jiani Liu ,Andrea Checcoli ,Jonathan Pol ,Oliver Kepp ,Guido Kroemer ,Lucillia Bezu
BACKGROUND: Local anesthetics promote anticancer immune responses. A machine learning-based algorithm trained with information on the biological effects and molecular descriptors of analgesics, anesthetics, hypnotics and opioids predicted antitumor effects for dexmedetomidine (DEX). DEX is a sedative acting as an alpha2-adrenoceptor (ADRA2) agonist. Based on these premises, we investigated the putative antineoplastic effects of DEX. RESULTS: In vitro, DEX promoted premortem stresses such as autophagy and partial endoplasmic reticulum stress with the phosphorylation of eukaryotic initiation factor 2 alpha and the inhibition of the splicing of X-box binding protein 1. DEX elicited the biomarkers of immunogenic cell death, including the release of ATP and high-mobility group box 1 protein, and the cell surface exposure of calreticulin, enhancing the engulfment of malignant cells by dendritic cells. In immunocompetent mice, DEX decreased the progression of colorectal cancers, fibrosarcomas, mammary carcinomas and melanomas, as it improved overall survival. These effects were inhibited by the ADRA2 antagonist yohimbine, suggesting that DEX mediates its anticancer effects at least in part on-target. Depending on the specific tumor model, DEX also enhanced the cytotoxic T cell/regulatory T cell ratio in the tumor bed and draining lymph nodes. Programmed cell death protein 1 blockade tended to improve DEX effects. After rechallenge with antigenically identical cells, no tumor appeared, indicating the formation of immunological memory. CONCLUSIONS: These results confirm the machine learning-predicted anticancer activity of DEX. Beyond its utility as a sedative agent in oncological intensive care, DEX may improve anticancer immunosurveillance and sensitize tumors to immune checkpoint blockade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。