Systematic evaluation of single-cell multimodal data integration for comprehensive human reference atlas.

对单细胞多模态数据整合进行系统评价,以构建全面的人类参考图谱

阅读:7
作者:Acera-Mateos Mario, Adiconis Xian, Li Jessica-Kanglin, Marchese Domenica, Caratù Ginevra, Hon Chung-Chau, Tiwari Prabha, Kojima Miki, Vieth Beate, Murphy Michael A, Simmons Sean K, Lefevre Thomas, Claes Irene, O'Connor Christopher L, Menon Rajasree, Otto Edgar A, Ando Yoshinari, Vandereyken Katy, Kretzler Matthias, Bitzer Markus, Fraenkel Ernest, Voet Thierry, Enard Wolfgang, Carninci Piero, Heyn Holger, Levin Joshua Z, Mereu Elisabetta
The integration of multimodal single-cell data enables comprehensive organ reference atlases, yet its impact remains largely unexplored, particularly in complex tissues. We generated a benchmarking dataset for the renal cortex by integrating 3' and 5' scRNA-seq with joint snRNA-seq and snATAC-seq, profiling 119,744 high-quality nuclei/cells from 19 donors. To align cell identities and enable consistent comparisons, we developed the interpretable machine learning tool scOMM (single-cell Omics Multimodal Mapping) and systematically assessed integration strategies. "Horizontal" integration of scRNA and snRNA-seq improved cell-type identification, while "vertical" integration of snRNA-seq and snATAC-seq had an additive effect, enhancing resolution in homogeneous populations and difficult-to-identify states. Global integration was especially effective in identifying adaptive states and rare cell types, including WFDC2-expressing Thick Ascending Limb and Norn cells, previously undetected in kidney atlases. Our work establishes a robust framework for multimodal reference atlas generation, advancing single-cell analysis and extending its applicability to diverse tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。