BACKGROUND: Stem cell-derived secreted factors could protect neurons in neurodegenerative disease or after injury. The exact neuroprotective components in the secretome remain challenging to discover. Here we developed a cell-to-cell interaction model to identify a retinal ganglion cell (RGC)-protective factor derived from induced pluripotent stem cells (iPSCs). METHODS: Primary RGCs were co-cultured with iPSCs or treated with iPSC-conditioned media in vitro. Cell viability were assayed using live-cell staining, and culture supernatant were analyzed via multiplexed antibody-based assays and ELISA. In vivo tests were carried out under mouse optic nerve crush model and RGC transplantation study in rats. Paired t-tests were used for data analysis between two groups. RESULTS: RGC viability was significantly enhanced when iPSCs were first stimulated with RGC-derived supernatant before iPSC-conditioned medium was collected and added into RGC culture. A significant increase of stem cell growth factor-beta (SCGF-β) concentration was detected in the latter conditioned medium. SCGF-β enhanced RGC survival in vitro and in vivo, and RGC-derived interleukin-12(p70) (IL-12[p70]) promotes secretion of iPSC-derived SCGF-β. Downstream of this IL-12(p70)-to-SCGF-β axis, ngn2 was significantly upregulated, and was found both necessary and sufficient for RGC survival. CONCLUSION: This study addresses a longstanding question of how neurons and stem cells interact to promote neuroprotection, and define a novel molecular interaction pathway whereby RGC's secretion of IL-12(p70) enhances iPSCs' secretion of SCGF-β, and SCGF-β protects RGCs via upregulating ngn2, suggesting that neurons may call on stem cells for their own protection.
Retinal ganglion cells induce stem cell-derived neuroprotection via IL-12 to SCGF-β crosstalk.
视网膜神经节细胞通过 IL-12 与 SCGF-β 的串扰诱导干细胞衍生的神经保护作用
阅读:9
作者:Xia Qing, Chang Kun-Che, Sun Yanan, Nahmou Michael, Noro Takahiko, Cheng Yun, Kong Xiangmei, Mo Xiaofen, Goldberg Jeffrey L, Wu Suqian
| 期刊: | Stem Cell Research & Therapy | 影响因子: | 7.300 |
| 时间: | 2025 | 起止号: | 2025 Feb 25; 16(1):90 |
| doi: | 10.1186/s13287-025-04198-5 | 研究方向: | 发育与干细胞、神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
