Hair follicle (HF) regeneration technology holds promise for treating hair loss, but creating a biomimetic structure that mimics the natural follicle microenvironment remains challenging. Here a novel bioengineered hair germ (BHG) is developed using thermodynamically incompatible mucopolysaccharides to enhance HF regeneration efficiency. Mucopolysaccharide-based hydrogels are synthesized by grafting amino and diethylamino groups (dihydroxyphenylalanine-grafted hyaluronic acid (HME) hydrogels) for rapid gelation and strong wetting adhesion. Dual-layered microspheres are fabricated using a co-flow microfluidic system, with HME as the outer shell and gelatin methacrylate (GelMA) as the core, achieving thermodynamic incompatibility. The Wnt3a protein is encapsulated for sustained release. RNA sequencing, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and functional validation are used to study the molecular mechanisms of HF regeneration. Results show that HME hydrogels exhibit excellent adhesion, shear-thinning behavior, and biocompatibility. The microspheres release Wnt3a for up to 9 days, with high-throughput sequencing revealing upregulation of HF regeneration genes like Ctnnb1 and Lef1, and activation of the Wnt signaling pathway, while hypoxia-related genes such as Hif-1É are downregulated. Pathway enrichment analyses confirm the enrichment of HF regeneration pathways. In conclusion, the HME-based BHG microspheres effectively promote in vivo HF regeneration, offering a promising solution for hair loss treatment and regeneration.
Construction of Large-Scale Bioengineered Hair Germs and In Vivo Transplantation.
大规模生物工程毛发胚芽的构建及体内移植
阅读:7
作者:Chen Yangpeng, Hou Yuhui, Chen Jiejian, Bai Jiaojiao, Du Lijuan, Qiu Chen, Qi Hanzhou, Liu Xuanbei, Huang Junfei
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Apr;12(16):e2416361 |
| doi: | 10.1002/advs.202416361 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
