Collective cell migration is crucial in various biological processes, including tumor progression and metastasis. The widely used scratch assay (wound healing assay) has limitations in throughput, reproducibility, and data analysis. To overcome these challenges, we previously developed the Transient Agarose Spot (TAS) assay, which enhanced assay precision and reproducibility. In this study, we present an improved microplate-based TAS assay. By using a microplate reader, we automated data acquisition, enabling the detection of cell migration in a 96-well plate format with greater throughput and accuracy. The new method applies Hoechst staining to label viable cells, providing a stable signal for kinetic analysis without compromising cell viability. We validated this approach with fluorophore-expressing cancer cells and demonstrated its ability to monitor dose-dependent effects of fetal bovine serum on cell migration. Additionally, we applied the microplate-based TAS assay to assess the anti-migratory effects of kinase inhibitors and mesenchymal stem cell-derived extracellular vesicles (EVs) on lung cancer cells. The assay accurately quantified migration inhibition and revealed the concentration-dependent effects of EVs, highlighting their potential as therapeutic agents. This microplate-based TAS assay provides a scalable, efficient, and cost-effective platform for high-throughput screening of cell migration and drug discovery, offering a robust alternative to traditional microscopy-based methods.
Improvement in Transient Agarose Spot (TAS) Cell Migration Assay: Microplate-Based Detection and Evaluation.
瞬时琼脂糖斑点(TAS)细胞迁移试验的改进:基于微孔板的检测和评价
阅读:10
作者:Veres-Székely Apor, Szász Csenge, Pap Domonkos, Bokrossy Péter, Lenzinger Dorina, Visnovitz Tamás, Mihály Judith, Pálmai Marcell, Varga Zoltán, Årfi László, Szabó Attila J, Vannay Ãdám, Szebeni Beáta
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 11; 26(12):5584 |
| doi: | 10.3390/ijms26125584 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
