Sorafenib, a multi-kinase inhibitor for advanced hepatocellular carcinoma (HCC), often encounters resistance within months of treatment, limiting its long-term efficacy. Despite extensive efforts, reliable plasma biomarkers to monitor drug activity remain elusive. Here, we demonstrate that metabolic reprogramming is a strategic response implemented by cancer cells to survive the therapeutic pressure. Sorafenib suppresses oxidative phosphorylation by disrupting electron transport chain supercomplex assembly and enhancing glycolysis. To mitigate the accumulation of harmful glycolytic byproducts such as advanced glycation end-products (AGEs), sorafenib-treated cells reroute excess dihydroxyacetone phosphate (DHAP) toward glycerol-3-phosphate (G3P) synthesis, supporting glycerolipid metabolism, NAD(+) regeneration, and redox balance, rather than producing D-lactate via the glyoxalase pathway. Alongside, resistant cells enhance serine metabolism to boost glutathione synthesis, reinforcing antioxidant defenses. Additionally, sorafenib increases reliance on exogenous non-esterified free fatty acids and triglycerides for phospholipid remodeling. The combined effects of glycerolipid remodeling and enhanced antioxidant capacity facilitate ferroptosis escape, diminishing sorafenib's activity. Leveraging these metabolic insights, we validate our findings by investigating plasma metabolites alteration in HCC patients. We identify D-lactate accumulation as a predictor of treatment response and glycerol accumulation as a marker of resistance, highlighting their potential as novel biomarkers for sorafenib activity. As sorafenib is used in advanced HCC, early detection of treatment response is critical to guiding the therapeutic decision, optimizing treatment strategies, and improving patient outcomes.
D-lactate and glycerol as potential biomarkers of sorafenib activity in hepatocellular carcinoma.
D-乳酸和甘油作为索拉非尼在肝细胞癌中活性的潜在生物标志物
阅读:8
作者:Pedretti Silvia, Palermo Francesca, Braghin Miriana, Imperato Gabriele, Tomaiuolo Pasquale, Celikag Meral, Boccazzi Marta, Vallelonga Veronica, Da Dalt Lorenzo, Norata Giuseppe Danilo, Marisi Giorgia, Rapposelli Ilario Giovanni, Casadei-Gardini Andrea, Ghisletti Serena, Crestani Maurizio, De Fabiani Emma, Mitro Nico
| 期刊: | Signal Transduction and Targeted Therapy | 影响因子: | 52.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 27; 10(1):200 |
| doi: | 10.1038/s41392-025-02282-z | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
