Alfalfa polysaccharide prevents H2O2-induced oxidative damage in MEFs by activating MAPK/Nrf2 signaling pathways and suppressing NF-κB signaling pathways

苜蓿多糖通过激活 MAPK/Nrf2 信号通路和抑制 NF-κB 信号通路防止 H2O2 诱导的 MEF 氧化损伤

阅读:4
作者:Lixue Wang, Yuhuai Xie, Weiren Yang, Zaibin Yang, Shuzhen Jiang, Chongyu Zhang, Guiguo Zhang

Abstract

Alfalfa polysaccharide (APS) is a bioactive component extracted from alfalfa that exhibits potent antioxidant properties. However, the cellular and molecular mechanisms underlying these properties remain unclear. To explore the molecular mechanism by which APS exerts antioxidant effects, an H2O2-induced oxidative stress mouse embryonic fibroblast (MEF) model was established. Cell proliferation, antioxidant enzyme activity, immune cytokine expression, and related protein expression were examined in APS-supplemented or non-supplemented conditions. The results suggested that APS strengthened the antioxidative capacity of MEFs, increasing cell proliferation, superoxide dismutase activity (SOD), and the total antioxidant capacity (T-AOC). In addition, APS reduced the secretion of interleukin (IL)-6 and IL-8 as well as expression of the proinflammatory gene retinoic acid-inducible gene I (RIG-I). APS was also able to activate the mitogen-activated protein kinase (MAPK) pathway, which promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus. However, expression of nuclear factor-κB (NF-κB) was decreased after APS treatment. Overall, these results suggest that APS relieves H2O2-induced oxidative stress in MEFs by activating MAPK/Nrf2 signaling and suppressing NF-κB signaling. To the best of our knowledge, this is the first study to link APS with MAPK/Nrf2, NF-κB and RIG-I, thus providing new perspectives regarding the mechanisms of the antioxidant activity of APS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。