Understanding transcriptional heterogeneity in cancer cells and its implication for treatment response is critical to identify how resistance occurs and may be targeted. Such heterogeneity can be captured by in vitro studies through clonal barcoding methods. We present TraCSED (Transformer-based modeling of Clonal Selection and Expression Dynamics), a dynamic deep learning approach for modeling clonal selection. Using single-cell gene expression and the fitness of barcoded clones, TraCSED identifies interpretable gene programs and the time points at which they are associated with clonal selection. When applied to cells treated with either giredestrant, a selective estrogen receptor (ER) antagonist and degrader, or palbociclib, a CDK4/6 inhibitor, pathways dynamically associated with resistance are revealed. For example, ER activity is associated with positive selection around day four under palbociclib treatment and this adaptive response can be suppressed by combining the drugs. Yet, in the combination treatment, one clone still emerged. Clustering based on partial least squares regression found that high baseline expression of both SNHG25 and SNCG genes was the primary marker of positive selection to co-treatment and thus potentially associated with innate resistance - an aspect that traditional differential analysis methods missed. In conclusion, TraCSED enables associating features with phenotypes in a time-dependent manner from scRNA-seq data.
Transformer-based modeling of Clonal Selection and Expression Dynamics reveals resistance mechanisms in breast cancer.
基于Transformer的克隆选择和表达动力学建模揭示了乳腺癌的耐药机制
阅读:6
作者:Maulding Nathan D, Zou Jun, Zhou Wei, Metcalfe Ciara, Stuart Joshua M, Ye Xin, Hafner Marc
| 期刊: | npj Systems Biology and Applications | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jan 10; 11(1):5 |
| doi: | 10.1038/s41540-024-00485-8 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
