The recruitment of macrophages to the intima of the arteries is a critical event in atherosclerotic progression. These macrophages accumulate excessive lipid droplets and become "foam cells", a hallmark of atherosclerosis. Most studies focus on lipid accumulation through macrophage interaction with modified monomeric low-density lipoprotein (LDL). However, in the intima, macrophages predominantly encounter aggregated LDL (agLDL), an interaction that has been studied far less. Macrophages digest agLDL and generate free cholesterol in an extracellular, acidic, and hydrolytic compartment. They form a tight seal around agLDL through actin polymerization and deliver lysosomal contents into this space in a process termed digestive exophagy. There is some evidence that inhibiting digestive exophagy to slow cholesterol accumulation in macrophages protects them from becoming foam cells and slows the progression of atherosclerotic lesions. Thus, understanding the mechanisms of digestive exophagy is critical. Here, we describe a high-content microscopy screen of a library of repurposed drugs for compounds that inhibit lysosome exocytosis during digestive exophagy. We identified many hit compounds and further characterized the effects that five of these compounds have on various aspects of digestive exophagy. In addition, three of the five compounds do not inhibit oxidized LDL-induced foam cell formation, indicating that the two pathways to foam cell formation can be targeted independently. We demonstrate that this high-content screening platform has great potential as a drug discovery tool with the ability to effectively and efficiently screen for modulators of digestive exophagy.
High-Content Microscopy Drug Screening Platform for Regulators of the Extracellular Digestion of Lipoprotein Aggregates by Macrophages.
用于巨噬细胞对脂蛋白聚集体进行细胞外消化调节剂的高内涵显微镜药物筛选平台
阅读:8
作者:Ma Cheng-I Jonathan, Steinfeld Noah, Wang Weixiang Alvin, Maxfield Frederick R
| 期刊: | ACS Pharmacology and Translational Science | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 May 14; 8(6):1567-1579 |
| doi: | 10.1021/acsptsci.4c00675 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
