Activated neutrophils release Neutrophil Extracellular Traps (NETs), comprising decondensed chromatin, peroxidases, and serine proteases, which aid in host defense but are also implicated in thrombosis and resistance to thrombolysis. Recombinant DNase 1, which degrades NETs, may aid in thrombus dissolution synergistically with fibrinolytics. However, its short half-life and susceptibility to plasma proteases limit its therapeutic applicability. To address these limitations, DNase1 is encapsulated into polymeric nanoparticles (DNPs) using inverse Flash Nanoprecipitation (iFNP), a scalable nanoparticle synthesis technique. Previously only used with model proteins, the study demonstrates for the first time the feasibility of extending iFNP to the encapsulation of therapeutic proteins. Conditions that promote DNase1 solubility, preserve activity, and demonstrate release resulting in ex vivo NET degradation are detailed. Furthermore, the use of neutrophils, the source of NETs, as carriers for DNPs to enhance targeted delivery is investigated. These findings confirm that DNP-loaded neutrophils maintain key functionalities, including viability and oxidative burst, and associate with in vitro blood clots to deliver nanoparticles, and DNase1 protein. This study not only extends the feasibility of applying iFNP to encapsulate therapeutic proteins into polymeric nanoparticles, a promising alternative to lipid nanoparticles, but also contributes to the emerging literature on neutrophils as delivery vectors for nanocarriers.
Development of DNase-1 Loaded Polymeric Nanoparticles Synthesized by Inverse Flash Nanoprecipitation for Neutrophil-Mediated Drug Delivery to In Vitro Thrombi.
利用反向闪光纳米沉淀法合成载有 DNase-1 的聚合物纳米颗粒,用于中性粒细胞介导的药物递送至体外血栓
阅读:6
作者:Maiocchi Sophie, Burnham Erica E, Cartaya Ana, Lisi Veronica, Buechler Nancy, Pollard Rachel, Babaki Danial, Bergmeier Wolfgang, Pinkerton Nathalie M, Bahnson Edward M
| 期刊: | Advanced Healthcare Materials | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Jun;14(15):e2404584 |
| doi: | 10.1002/adhm.202404584 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
