Multifaceted Functional Liposomes: Theranostic Potential of Liposomal Indocyanine Green and Doxorubicin for Enhanced Anticancer Efficacy and Imaging.

多功能脂质体:脂质体吲哚菁绿和阿霉素在增强抗癌功效和成像方面的诊疗潜力

阅读:5
作者:Liao Wei-Ting, Chang Dao-Ming, Lin Meng-Xian, Chou Te-Sen, Tung Yi-Chung, Hsiao Jong-Kai
Background/Objectives: Liposomal drug formulations improve anticancer treatment efficacy and reduce toxicity by altering pharmacokinetics and biodistribution. Indocyanine Green (ICG), an FDA-approved near-infrared imaging agent, exhibits photosensitivity, photothermal effects, and potential ferroptosis induction, enhancing anticancer activity. Doxorubicin (DOX), widely used for treating breast, ovarian, and liver cancers, is limited by cardiotoxicity, requiring dosage control. Incorporating ICG and DOX into liposomes enables medical imaging, controlled drug release, reduced administration frequency, and fewer side effects. This study aims to develop liposomes encapsulating both ICG and DOX and evaluate their theranostic potential in in vitro and in vivo lung adenocarcinoma models. Methods: Liposomes containing ICG and DOX (Lipo-ICG/DOX) were synthesized using an active loading method and characterized for size (~140 nm), lipid, and drug concentrations. In vitro studies using A549 lung cancer cells assessed liposome uptake via fluorescence microscopy, while in vivo xenograft models evaluated therapeutic efficacy. Results: Lipo-ICG/DOX showed uptake in A549 cells, with ICG localizing in lysosomes and DOX in nuclei. Treatment reduced cell viability significantly by day three. In vivo imaging demonstrated the retention of liposomes in tumor sites, with ICG signals observed in the liver and intestines, indicating metabolic routes. When combined with 780 nm light exposure, liposomes slowed tumor growth over 12 days. Mechanistic studies revealed combined ferroptosis and apoptosis induction. Conclusions: Lipo-ICG/DOX demonstrates strong theranostic potential, integrating imaging and therapy for lung adenocarcinoma. This multifunctional formulation offers a promising strategy for improving cancer treatment efficacy while minimizing side effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。