Instant fluorescence lifetime imaging microscopy reveals mechano-metabolic reprogramming of stromal cells in breast cancer peritumoral microenvironments.

即时荧光寿命成像显微镜揭示了乳腺癌肿瘤周围微环境中基质细胞的机械代谢重编程

阅读:7
作者:Najera Julian, Chen Hao, Batista Bianca, Ketchum Frank, Ali Aktar, Zorlutuna Pinar, Howard Scott, Datta Meenal
The breast peritumor microenvironment (pTME) is increasingly recognized as a mediator of breast cancer progression and treatment resistance. However, if and how growth-induced tumor compressive forces (i.e., solid stresses) influence the breast pTME remains unclear. Here we show using instant fluorescence lifetime imaging microscopy (FLIM)-a frequency-domain FLIM system capable of simultaneous image acquisition and instantaneous data processing-that breast tumor-mimicking in vitro compression promotes metabolic changes in stromal cells found in the breast pTME. Namely, compression shifts NIH3T3 fibroblasts and differentiated 3T3-L1 (d3T3-L1) adipocytes toward a more glycolytic state, while it promotes increased oxidative phosphorylation in 3T3-L1 undifferentiated adipocytes. The gold-standard Seahorse extracellular flux assay fails to capture these changes, underscoring the superior sensitivity of instant FLIM in detecting metabolic shifts. We validate these phenotypic findings at the transcriptomic level via RNA sequencing, confirming that compressed fibroblasts downregulate oxidative phosphorylation and upregulate glycolysis compared to uncompressed controls. We further demonstrate that compression induces mitochondrial dysregulation in undifferentiated adipocytes, driven in part by upregulated mitophagy and disrupted fusion dynamics. Finally, we confirm that these stromal cell types recapitulate these distinct metabolic states in human breast cancer patient samples, consistent with our in vitro findings. By elucidating mechano-metabolic interactions occurring at the tumor-host interface, these results will inform the development of innovative mechano-metabolic reprogramming treatment strategies to improve breast cancer patient survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。