The Shab family voltage-gated K(+) channels (i.e., Kv2.1, Kv2.2) are widely expressed in mammalian brain and regulate neuronal action-potential firing. In addition to their canonical functions, the Kv2 proteins help establish direct attachments between plasma membrane and endoplasmic reticulum (ER), also known as ER-plasma membrane junctions. However, the biochemical properties and molecular organization of these ion channels have not yet been described in human neurons. Here, we have performed a systematic analysis of endogenous expression, post-translational modification, and subcellular distribution of the major components of Kv2 complex in neurons derived from human stem cells. We found that both Kv2.1, Kv2.2, and their auxiliary subunit AMIGO1 are significantly upregulated during early neurogenesis, localize at the cell surface, and already begin to assemble with each other. Human Kv2.1 and AMIGO1, but not Kv2.2, undergo substantial post-translational modification including phosphorylation and/or N-linked glycosylation. Acute pharmacological inhibition with Kv2 blockers also revealed their functional activation in human neurons. These proteins formed prominent clusters at cell bodies, dendritic branches, and axon initial segments. Interestingly, a large fraction of them also exhibited considerable accumulation at human presynaptic terminals, where they aggregated with the local ER network. This synaptic localization of Kv2 subunits was primarily restricted to presynaptic regions, as they demonstrated limited enrichment at postsynaptic densities. These results were highly reproducible in multiple stem cell lines used and alternative differentiation protocols tested, confirming that human presynaptic compartments can actively recruit the Shab family K(+) ion channels.
The Shab family potassium channels are highly enriched at the presynaptic terminals of human neurons
Shab家族钾通道在人类神经元的突触前末端高度富集。
阅读:2
作者:Orion Benner ,Charles H Karr ,Astrid Quintero-Gonzalez ,Michael M Tamkun ,Soham Chanda
| 期刊: | Journal of Biological Chemistry | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Mar;301(3):108235. |
| doi: | 10.1016/j.jbc.2025.108235 | 种属: | Human |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
