Predicting the absorption of orally administered drugs is crucial to drug development. Current in vitro models lack physiological relevance, robustness, and reproducibility, thus hindering reliable predictions. In this study, we developed a reproducible and robust culture method to generate a human intestinal organoid-derived monolayer model that can be applied to study drug absorption through a step-by-step approach. Our model showed similarity to primary enterocytes in terms of the drug absorption-related gene expression profile, tight barrier function, tolerability toward artificial bile juice, drug transporter and metabolizing enzyme function, and nuclear receptor activity. This method can be applied to organoids derived from multiple donors. The permeability of launched 19 drugs in our model demonstrated a correlation with human Fa values, with an R(2) value of 0.88. Additionally, by combining the modeling and simulation approaches, the estimated FaFg values for seven out of nine drugs, including CYP3A substrates, fell within 1.5 times the range of the human FaFg values. Applying this method to the drug discovery process might bridge the gap between preclinical and clinical research and increase the success rates of drug development.
Robust and reproducible human intestinal organoid-derived monolayer model for analyzing drug absorption.
用于分析药物吸收的稳健且可重复的人类肠道类器官衍生单层模型
阅读:7
作者:Tanaka Kai, Mochizuki Tatsuki, Baba Shogo, Kawai Shigeto, Nakano Kiyotaka, Tachibana Tatsuhiko, Uchimura Kohsuke, Kato Atsuhiko, Miyayama Takashi, Yamaguchi Tomohito, Nishihara Hiroshi, Terao Kimio, Kato Yasutaka
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 3; 15(1):11403 |
| doi: | 10.1038/s41598-025-95823-z | 种属: | Human |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
