Rheological transition driven by matrix makes cancer spheroids resilient under confinement.

基质驱动的流变转变使癌细胞球体在受限环境下具有韧性

阅读:6
作者:Dutt Tavishi, Langthasa Jimpi, Umesh Monica, Mishra Satyarthi, Bothra Siddharth, Vidhipriya Kottpalli, Vadaparty Annapurna, Sen Prosenjit, Bhat Ramray
Cancer metastasis through confining peritoneal microenvironments is mediated by spheroids: clusters of disseminated cells. Ovarian cancer spheroids are frequently cavitated; such blastuloid morphologies possess an outer ECM coat. We investigated the effects of these spheroidal morphological traits on their mechanical integrity. Atomic force microscopy showed blastuloids were elastic compared with their prefiguring lumenless moruloid counterparts. Moruloids flowed through microfluidic setups mimicking peritoneal confinement, exhibited asymmetric cell flows during entry, were frequently disintegrated, and showed an incomplete and slow shape recovery upon exit. In contrast, blastuloids exhibited size-uncorrelated transit kinetics, rapid and efficient shape recovery upon exit, symmetric cell flows, and lesser disintegration. Blastuloid ECM debridement phenocopied moruloid traits including lumen loss and greater disintegration. Multiscale computer simulations predicted that higher intercellular adhesion and dynamical lumen make blastuloids resilient. Blastuloids showed higher E-cadherin expression, and their ECM removal decreased membrane E-cadherin localization. E-cadherin knockdown also decreased lumen formation and increased spheroid disintegration. Thus, the spheroidal ECM drives its transition from a labile viscoplastic to a resilient elastic phenotype, facilitating their survival within spatially constrained peritoneal flows.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。