The current understanding of cellular protein distribution in clinical samples is limited. This is partially due to the complexity and heterogeneity of tissues combined with the qualitative nature of analysis by immunohistochemistry (IHC). The common use of manual assessment in the clinic is time-consuming and restricts both the complexity of scoring and the scale of patient tissue analysis. This has limited the transfer of biological observations into pathology and their integration into diagnostics. Immunofluorescence (IF) techniques allow detailed and high-throughput investigation of proteins in cell models, but their application to tissues has been hindered by poor antibody penetration, autofluorescence artefacts, and weak signals. With a growing focus on precision medicine, scalable techniques to investigate and analyse proteins are critically important. To address this, we generated a high-throughput ImmunoHistoFluorescence (IHF) approach, applying IF to tissue samples followed by automated acquisition and artificial intelligence (AI)-based analysis of sub-nuclear protein distribution to enable precise investigation of complex protein localization patterns. This advancement offers a method to transfer in vitro findings into human tissues to analyse protein localization patterns in physiologically relevant contexts for improved understanding of disease-driving mechanisms in patients, identification of new biomarkers, and acceleration of translational research.
A High-Throughput ImmunoHistoFluorescence (IHF) Method for Sub-Nuclear Protein Analysis in Tissue.
一种用于组织中亚核蛋白分析的高通量免疫组织荧光(IHF)方法
阅读:9
作者:Oxe Kezia Catharina, Rohrberg Kristoffer Staal, Lassen Ulrik, Larsen Dorthe Helena
| 期刊: | Cells | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 18; 14(14):1109 |
| doi: | 10.3390/cells14141109 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
