Intranasal drug delivery to the brain offers a promising strategy to overcome biological barriers. Chitosan-coated nanoemulsion-based nanocapsules demonstrate significant potential due to their mucoadhesive properties, ability to permeate epithelial cells, and ability to solubilize poorly water-soluble drugs, making them ideal candidates for bypassing the blood-brain barrier and overcoming the nasal mucosa. To ensure effective drug delivery, it is critical to assess the integrity of these nanocapsules during their transit across such barriers. In this study, we employed Förster resonance energy transfer to track the structural integrity of nanocapsules during transport. A simplified in vitro model was established using Calu-3 cells to mimic the mucosal epithelial barrier and Balb-c 3T3 fibroblasts as target cells. Our findings demonstrated that the nanoemulsion core of the nanocapsules successfully crossed the in vitro epithelial barrier and reached target cells while maintaining its structural integrity. These results validate the potential of chitosan-coated nanocapsules as a robust platform for the intranasal delivery of drugs to the brain.
Förster Resonance Energy Transfer (FRET) Demonstrates In Vitro Chitosan-Coated Nanocapsules Suitability for Intranasal Brain Delivery.
Förster共振能量转移(FRET)体外证明壳聚糖包覆纳米胶囊适用于鼻内脑递送
阅读:11
作者:Alleva Maria, Baranyai Zsuzsa, Esteban-Pérez Natalia, MartÃnez-Vicente Pablo, MartÃn-Rapún Rafael, Moros MarÃa, MartÃnez de la Fuente Jesús
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 May 7; 17(18):26348-26360 |
| doi: | 10.1021/acsami.5c01920 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
