The essential outcome of a successful mating is the transfer of genetic material from males to females in sexually reproducing animals from insects to mammals. In males, this culminates in ejaculation, a precisely timed sequence of organ contractions driven by the concerted activity of interneurons, sensory neurons, and motor neurons. Although central command circuits that trigger copulation have been mapped, the motor architecture and the chemical logic that couple specific neuronal subclasses to organ specific contractility, seminal fluid secretion, and sperm emission remain largely uncharted. This gap in knowledge limits our ability to explain how neural circuits adapt to varying contexts and how their failure contributes to infertility. Here we present an in-depth anatomical and functional analysis of the motor neurons that innervate the internal male reproductive tract of Drosophila melanogaster. We identify two classes of multi-transmitter motor neurons based on neurotransmitter usage, namely octopamine and glutamate neurons (OGNs) and serotonin and glutamate neurons (SGNs), each with a biased pattern of innervation: SGNs predominate in the accessory glands, OGNs in the ejaculatory duct, with equal contributions of each to the seminal vesicles. Both classes co-express vesicular transporters for glutamate (vGlut) and amines (vMAT), confirming their dual chemical identity. Their target organs differentially express receptors for glutamate, octopamine, and serotonin, suggesting combinatorial neuromodulation of contractility. Functional manipulations show that SGNs are essential for male fertility but OGNs are dispensable. Glutamatergic transmission from both classes is also dispensable for fertility. These findings provide the first high-resolution map linking multi-transmitter motor neurons to specific reproductive organs, reveal an unexpected division of labor between serotonergic and octopaminergic signaling pathways, and establish a framework for dissecting conserved neural principles that govern ejaculation and male fertility.
Two classes of amine/glutamate multi-transmitter neurons innervate Drosophila internal male reproductive organs.
两类胺/谷氨酸多递质神经元支配果蝇雄性内部生殖器官
阅读:12
作者:Chaverra Martha, Toney John Paul, Dardenne-Ankringa Lizetta D, Knee Jace Tolleson, Morris Ann R, Wadhams Joseph B, Certel Sarah J, Stowers R Steven
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 28 |
| doi: | 10.1101/2025.07.23.666348 | 种属: | Drosophila |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
