DDR1 regulates RUNX1-CBFβ to control breast stem cell differentiation.

阅读:2
作者:Trepicchio Colin, Rauner Gat, Traugh Nicole, Wang Ruohong, Parrish Meadow, Fein Daniel E C, Mal Youssof, Gupta Piyush B, Monti Stefano, Kuperwasser Charlotte
Understanding epithelial stem cell differentiation and morphogenesis during breast tissue development is essential, as disruption in these processes underlie breast cancer formation. We used a next-generation single-cell-derived organoid model to investigate how individual stem cells give rise to complex tissue. We show that discoidin domain receptor 1 (DDR1) inhibition traps cells in a bipotent state, blocking alveolar morphogenesis and luminal cell expansion, which is necessary for complex epithelium formation. Disrupting RUNX1 function produced nearly identical phenotypes, underscoring its critical role downstream of DDR1. Mechanistically, DDR1 affects the interaction and expression of RUNX1 and its cofactor core binding factor beta (CBFβ), thereby regulating its activity. Mutational analyses in breast cancer patients reveal frequent alterations in the DDR1-RUNX1 signaling axis, particularly co-occurring mutations. Together, these findings uncover DDR1-RUNX1 as a central signaling pathway driving breast epithelial differentiation, whose dysregulation may contribute fundamentally to breast cancer pathogenesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。