Intestinal inflammation and microbiota modulation impact cochlear function: emerging insights in gut-ear axis.

肠道炎症和微生物群调节影响耳蜗功能:肠-耳轴的新见解

阅读:7
作者:Pisani Anna, Petito Valentina, Paciello Fabiola, Emoli Valeria, Masi Letizia, Hizam Veronica Mohamed, Puca Pierluigi, Montuoro Raffaele, Chierico Federica Del, Putignani Lorenza, Grassi Claudio, Galli Jacopo, Taglialatela Maurizio, Caristo Maria Emiliana, Ianiro Gianluca, Lopetuso Loris Riccardo, Cammarota Giovanni, Gasbarrini Antonio, Fetoni Anna Rita, Scaldaferri Franco
BACKGROUND: Although several evidence demonstrates a "gut-microbiota-brain axis", suggesting a bidirectional communication between gut microbiota and the central nervous system, less is known about a possible link between the gut and the peripheral nervous system, including the inner ear. METHODS: Here, we investigated the impact of intestinal inflammation and the modulation of gut microbiota through fecal microbiota transplantation on hearing sensitivity. Female C57BL/6 mice were assigned to four groups: control (Ctrl), DSS-induced colitis (DSS), FMT from patients with active ulcerative colitis (FMT aUC), and FMT from patients with ulcerative colitis in remission (FMT rUC). Auditory function was evaluated by auditory brainstem responses (ABR). Morphological and molecular analyses on cochlear tissues were performed using immunofluorescence, histological staining, and Western blot to assess inflammation, oxidative stress, and blood-labyrinth barrier integrity. Donor microbiota composition was characterized by 16S rRNA sequencing, and systemic inflammation was evaluated by measuring serum lipopolysaccharide (LPS) levels. RESULTS: We found that intestinal dysbiosis is associated with functional, morphological, and molecular alterations in the cochlea, such as increased oxidative stress, inflammation, and altered blood-labyrinth barrier permeability. This leads to macrophage infiltration and immune response activation through the MyD88/NF-κB pathway. Notably, these effects were exacerbated by FMT from subjects with aUC, while FMT from patients with rUC provided a protective effect on cochlear functions. CONCLUSIONS: Overall, our findings suggest that gut inflammation, microbiota alteration, or its therapeutic modulation can impact inner ear pathology: worsening gut inflammatory status negatively affects hearing sensitivity, while the restoration of gut microbiota positively impacts auditory function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。