Brain-wide neuronal circuit connectome of human glioblastoma

人类胶质母细胞瘤的全脑神经回路连接组

阅读:2
作者:Yusha Sun # ,Xin Wang # ,Daniel Y Zhang ,Zhijian Zhang ,Janardhan P Bhattarai ,Yingqi Wang ,Kristen H Park ,Weifan Dong ,Yun-Fen Hung ,Qian Yang ,Feng Zhang ,Keerthi Rajamani ,Shang Mu ,Benjamin C Kennedy ,Yan Hong ,Jamie Galanaugh ,Abhijeet Sambangi ,Sang Hoon Kim ,Garrett Wheeler ,Tiago Gonçalves ,Qing Wang ,Daniel H Geschwind ,Riki Kawaguchi ,Angela N Viaene ,Ingo Helbig ,Sudha K Kessler ,Ahmet Hoke ,Huadong Wang ,Fuqiang Xu ,Zev A Binder ,H Isaac Chen ,Emily Ling-Lin Pai ,Sara Stone ,MacLean P Nasrallah ,Kimberly M Christian ,Marc Fuccillo ,Nicolas Toni ,Zhuhao Wu ,Hwai-Jong Cheng ,Donald M O'Rourke ,Minghong Ma ,Guo-Li Ming ,Hongjun Song
Glioblastoma (GBM) infiltrates the brain and can be synaptically innervated by neurons, which drives tumour progression(1,2). Synaptic inputs onto GBM cells identified so far are largely short range and glutamatergic(3,4). The extent of GBM integration into the brain-wide neuronal circuitry remains unclear. Here we applied rabies virus-mediated and herpes simplex virus-mediated trans-monosynaptic tracing(5,6) to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrate into diverse local and long-range neural circuits across the brain. Beyond glutamatergic inputs, we identified various neuromodulatory inputs, including synapses between basal forebrain cholinergic neurons and GBM cells. Acute acetylcholine stimulation induces long-lasting elevation of calcium oscillations and transcriptional reprogramming of GBM cells into a more motile state via the metabotropic CHRM3 receptor. CHRM3 activation promotes GBM cell motility, whereas its downregulation suppresses GBM cell motility and prolongs mouse survival. Together, these results reveal the striking capacity for human GBM cells to rapidly and robustly integrate into anatomically diverse neuronal networks of different neurotransmitter systems. Our findings further support a model in which rapid connectivity and transient activation of upstream neurons may lead to a long-lasting increase in tumour fitness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。